Computational
Thinking

Overview

Computational thinking is a flexible model programmers use to formulate a
computer-based solution. One of the objectives of the computational thinking
model is to get you thinking like a programmer, but also to aid in
organizing your approach to problem solving. There are variations of this
model, but commonly there are seven identifiable core parts:

Understand the Problem
Decomposition

Data Representation
Pattern Recognition
Abstraction

Algorithm

N o Uk W N e

Testing

The sequence of this list is based on the most common application of these
parts, but by no means is it strict or concrete - depending on the problem, you
may omit parts all together or swap some parts around as needed.

Problem solving is often iterative (repeating) and when changes are made in
one major part it can have a cascading (snowball) effect on other parts. It is
common to have to review other parts or at least anything related to parts that
have changed, and this can be difficult to manage so you need to have a
process that helps you do this which is where the computational thinking
model comes in.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Ultimately what you want to accomplish is the creation of a complete correctly
working algorithm that solves the problem which can be used by a
programmer to quickly and efficiently code the solution.

Let’s have a closer look at each of these core parts.

Understand the Problem

ot Problem Domain (scope) e,
zl;jz o0 (Problem Not Fully Defined) -y

.

-
.
X L
s L]
- -
. -
w -

* .

* -
. +
. .
L]

.
. *e . -
Irrelevant Details e, A Lt i Irrelevant Details

e e e)

This may seem obvious, but understanding the problem is critical given the

major side effects of what happens when the actual problem is misunderstood.
If the problem is not fully understood, the outcome will almost certainly not be
a solution to the problem resulting in many angry people (ranging from your
peers, stakeholders, and even your family!).

Developing computer solutions is a time demanding and costly process so be
sure to have a complete understanding of the problem to avoid wasting time
and money on efforts not applicable to the problem you need to solve.

The most common failure is making assumptions. The problem is not always
clear and depending on who is responsible for defining the problem (the client
versus a project manager for instance), the details can be misleading or
completely missing critical information. Assumptions are easy to make in cases
where meaning is ambiguous or not explicit so be sure to confirm your

assumptions before proceeding.

Here is an example of a poorly worded problem that can lead to all sorts of
possible "solutions" because it is too vague and ambiguous:

"The yearly revenue report doesn't work and needs to be corrected before
we move on to the next phase of the project."

The issue is in the term "doesn't work". This phrase can so easily be
misinterpreted - what exactly doesn't work?

* Are the calculations incorrect?
* |s the data corrupt?

e Could it be a minor cosmetic or formatting problem that only one person
doesn't like?

* |s the application interface components not arranged in the way this one
person likes?

If you make the assumption of any one of these things, you will most likely be
incorrect. In these situations, you MUST seek clarity and precisely determine
what "doesn't work" actually means. Without an explicitly defined problem, you
can't deliver a solution!

A\ CAUTION

The viewpoint of a "problem" is often very subjective - what one person
may see as an issue, another person may not agree. These issues are
usually worked out by a project manager but for smaller projects, it is
unlikely to have this benefit, so keep your guard up and always make sure
there is general consensus supporting a common request.

Having a clear understanding of the problem will provide you with the scope

and boundaries of both the problem and the solution you need to create. This
is extremely important as it will keep you focused on only the pertinent details
of the problem and avoid wasting time, money, and effort into unrelated
matters.

Decomposition

Most problems are too complex or are too dynamic in nature to immediately
start creating a solution. Decomposing a problem into many smaller scoped
problems greatly simplify many aspects of creating a solution. This step is
mainly focused on identifying the major pieces of logic that can be extracted
from the problem.

Isolating a specific part of a problem, removes irrelevant parts and greatly
reduces the overall complexity for that part. This allows us to easily
concentrate only on the important aspects of the smaller problem. Generally,
there is no such thing as a complex problem - we just need to break it down
into easier to solve smaller parts!

Here is an example of decomposition based on part of a much larger problem :

"The website should provide our administrators the ability to view the
clerks who are currently logged-in to the system and for any selected
clerk, provide options to send a message, disconnect them from the

system, or assign a new task."

There are several significant pieces of the problem we can extract from this:

* The website user-interface (displaying the logged-in clerks and providing
action options when a specific clerk is selected).
o Possible function name: "InitializeClerksLoggedin"

o This function's scope will be limited to focusing only on preparing the
interface, getting and displaying the logged-in user data listing, and
providing the options for a selection.

* Sending a message to a specific clerk
o Possible function name: "SendClerkMessage"

o This function's scope will be limited to focusing only on how an
administrator can send a message to a selected clerk from the list.

» Disconnecting a specific clerk
o Possible function name: "DisconnectClerk"

o This function's scope will be limited to focusing only on how a selected
logged-in user is disconnected.

» Assigning a new task to a specific clerk
o Possible function name: "AssignClerkTask"

o This function's scope will be limited to focusing only on how a selected
logged-in user is assigned a new task.

These are four major pieces of the problem that can be extracted and focused
on to solve individually. These can be compartmentalized into specific
functions where the logic can be isolated to solve only that specific part of the
problem.

The process of identifying smaller parts of the problem can validate your
understanding of the problem and confirms the overall scope. Often

this process will identify missed or undefined parts of the problem that will
need to be clarified which could likely expand the scope or sometimes have the
opposite effect where irrelevant parts are identified and could likely reduce the
scope.

Reducing a large problem into many smaller parts, promotes a lot of
flexibility in how you will orchestrate and reassemble these smaller
solutions together when finalizing a complete solution. It is important to
take your time in this phase to filter for only the critical information and
processes.

(® NOTE

* This stage often identifies the potential core functions (procedures)
to be created and used in the solution.

* Functions represent algorithms comprised of several logical steps
which perform a specific task (this will be described in more detail
later on)

Data Representation

Contact-Name o) i iy weiiisCe! Email-Address
Apartment postal-code

ity Last-Name a :
Street-NumberClty Time-zone Work-Email

Unit-Number

Information (data) is a major part of a computer-based solution since the data
can significantly impact how the solution works and what it must do with the

data. How data is received, used, or output is not the focus in this step, rather
the objective is to identify WHAT the relevant data is and to ensure it

is represented in a way it can be used in the solution.

Data representation is accomplished by representing data with variables (the
technical aspect of this is covered later). Variables are named placeholders
which can be referred to within the solution to access specific information by
name to refer to the value. For example, if we needed to manage data about a
person’s contact information, some key data would be:

Information Variable Value

Full Name name Jiminy Cricket
Email Address email jcricket@domain.com
Cell Number cell (123) 123-1234

The important information in this example is a person’s name, email address,
and cell phone number. These important pieces of data are mapped or
represented by variables which can be named to anything you wish but should
almost always apply a self-documented identifier to clearly represent
the data while not being too long.

When we refer to the variable name, it will represent a value corresponding to
that variable which in this example is Jiminy Cricket . Likewise, if we needed
to refer to the email address data jcricket@domain.com, then the variable
email would be used to target this information.

One question you may raise during this phase is about how much data you
need to manage/represent and how granular (broken down into parts) you
need to make it. In the preceding example, there is a name variable which
includes the full name - does the solution require you to make a distinction

between first and last name parts? If so, then you will need to represent this
data separately where the name variable would need to be split into two
variables such as firstName and lastName (or surname). Eliminating the
original variable name. When you need to refer to the full name, you would
simply join these two variables accordingly.

There is an additional more advanced concept we can use to help manage
more complex data representation, but this will be discussed later in two other
sections:

e data collections

e data structures

Pattern Recognition

/ AddContact UpdateContact SearchContact \
* Display Labels for each field * Display Labels for each field * Display Email Label
* Get inputs for each field * Get changes made for each field * Get input for email value
*Validate email field: *Validate email field: *Validate email field:
o No invalid characters o No invalid characters o No invalid characters
o One @ symbol, not 1st char. o0 One @ symbol, not 1st char. o One @ symbol, not 1st char.
o Dot char is after @ and not the last char. o Dot char is after @ and not the last char. o Dot char is after @ and not the last char.
o Overall length not > 256 chars. o Overall length not = 256 chars o Overall length not > 256 chars
* Find matching contact by email

* Display matching contact details
K * Contains Repeating Logic in Several Places /

After decomposing a problem into several smaller parts (let’s say for example
we have identified three functions as illustrated in the above image) and in
outlining each of those functions, you notice repetition in the logic. The
repetition can be within the same function and/or in other functions - this is
undesirable! Why? Let’s analyze the example further.

@ NOTE

The breakdown of these functions as described below is an overview
only. You will learn how to properly document logic later.

Function: AddContact

* This will detail all the steps needed to add the details of a new contact

* After the user enters an email address, the email field will be validated
to ensure the email entered matches the expected format
(value@value.value).

o The email validation logic will require several steps of logic to
implement:
m Makes sure there are no invalid characters
m Makes sure there is a single @ symbol and not the first
character

m Makes sure there is a . symbol and at least 2 characters after
the @ and not the last character

m Makes sure the overall length is not excessive (ie. > 256
characters)

Function: UpdateContact

* This will detail all the steps needed to update the details of an existing
contact

» After the user enters an email address, the email field will be validated
to ensure the email entered matches the expected format
(value@value.value).

o The email validation logic will require several steps of logic to
implement:

m Makes sure there are no invalid characters

m Makes sure there is a single @ symbol and not the first
character

m Makes sure there is a . symbol and at least 2 characters after
the @ and not the last character

m Makes sure the overall length is not excessive (ie. > 256
characters)

Function: Searchcontact (based on email field)

* This will detail all the steps needed to search for a specific contact
based on a user-entered email address and then display the contact
details

» After the user enters an email address, the email field will be validated
to ensure the email entered matches the expected format
(value@value.value).

o The email validation logic will require several steps of logic to
implement:
m Makes sure there are no invalid characters
m Makes sure there is a single @ symbol and not the first
character

m Makes sure there is a . symbol and at least 2 characters after
the @ and not the last character

m Makes sure the overall length is not excessive (ie. > 256
characters)

All three functions contain the same email validation logic which means this
would be coded (by a programmer) three separate times! Why is this

undesirable?

What if the email validation logic has a bug (an error that doesn’t properly
validate the email)? You would have to review and change potentially all three
functions that repeat this logic. It is very inefficient to maintain this type of
design and is error-prone given the redundancy (could have three versions of
validation all of which could be slightly different). Another case is if the email
formatting rules change, again, this would require updating all occurrences of
this logic. What is the solution to this?

You should extract the repeating logic into its own function where the
logic can be defined once, then in other parts of the solution where you need
that logic implemented, you execute that logic when and where you need it.
The function you create should be given a meaningful name that best
describes what it does so it’'s easy to use and communicate. In this example
the function could be called validateEmail. Now, the three other functions
can be updated to CALL the new function validateEmail eliminating the
redundancy of fully detailing how that logic works in three different places!

NEW Function: validateEmail

¢ Validates the email address to ensure the email entered matches the
expected format (value@value.value) snf will be the ONLY place
where this logic is defined.

* Makes sure there are no invalid characters
* Makes sure there is a single @ symbol and not the first character

* Makes sure there is a . symbol and at least 2 characters after the @
and not the last character

* Makes sure the overall length is not excessive (ie. > 256 characters)

* Now this logic can easily be used by other parts of the solution

whenever needed without repetition.

Function: AddContact

* This will detail all the steps needed to add the details of a new contact

e After the user enters an email address, CALL validateEmail

Function: UpdateContact

* This will detail all the steps needed to update the details of an existing
contact

e After the user enters an email address, CALL validateEmail

Function: Ssearchcontact (based on email field)

* This will detail all the steps needed to search for a specific contact
based on a user-entered email address and then display the contact
details

e After the user enters an email address, CALL validateEmail

Several lines of logic are now removed from each of the functions
(Addcontact, UpdateContact, and SearchContact) because there is now a
common function called validateEmail and each function that needs this
logic implementation simply CALL's that function (ex: CALL validateEmail)
when needed.

The below image illustrates the correction to the illustration at the beginning of
this section.

ValidateEmail AddContact UpdateContact SearchContact

* No invalid characters * Display Labels for each field * Display Labels for each field * Display Email Label
*One @ symbol, not 1st char.
* Dot character is after @ and not the last char. * Get inputs for each field * Get changes made for each field * Get input for email value

* Overall length not = 256 chars.

* CALL ValidateEmail * CALL ValidateEmail * CALL ValidateEmail

* Find matching contact by email

* Display matching contact details

* Repeating Logic Has Been Eliminated

There is another situation where you may reveal a repeating pattern but does
not necessarily require a function to address it. Sometimes the repetition is
purely semantic (logical) and can be handled using iteration which is a
concept covered later.

Q SUMMARY

Patterns exhibiting a duplication in logic can usually be addressed by
making a dedicated function which contains the logic in a single place.
The function can then be called from anywhere in the solution to
implement that logic whenever needed. Functions provide many benefits:

* Single place to manage the logic
* Simplifies the reading of logic (don't need to know how the logic works
everywhere it is used)

* Reduces the overall footprint size of the solution by eliminating
redundant detailed logic

There are also situations where logic duplication is purely semantic
(logical) and can be managed using a logic control method referred to as
iteration.

Abstraction

SortByDateDescending (reportData)

SortByDateAscending (reportData) SortByDate (reportData, sortOrder)

SortBySalesDescending (reportData)

SortBySalesAscending (reportData) SortBySales (reportData, sortOrder) SortReport (reportData, field, sortOrder)
SortBySalesPersonAscending (reportData) SortBySalesPerson (reportData, sortOrder)

SortBySalesPersonDescending (reportData)

Abstraction is an extension of pattern recognition in that you can observe
similar logic across many parts of the solution but are different in only minor
ways, however the main essence of the logic is the same. Logic where the
overall concept or idea can be reused but execute slightly differently across
different contexts is an abstraction. Let's look at an example of this.

An application is needed to produce a business report for management
that shows weekly data about their sales. The report data contains the
date (formatted as: YYYY-MM-DD and is the Sunday of each week),
salesperson name, and the total sales for that salesperson for that week
- all reports use the same data but there are six main ways to view the
report:

By the date -> ascending order

By the date -> descending order

By the salesperson's total sales -> ascending order
By the salesperson's total sales -> descending order

By the salesperson's name -> ascending order

A o A

By the salesperson's name -> descending order

(® NOTE

Since all the report views use the same report data, we will represent the

dataset with a variable reportData.

You might initially break this down so there is a function for each possible
report view (notice the report data is sent to the function so the function can
access the data):

SortByDateDescending (RECEIVES: reportData)
SortByDateAscending (RECEIVES: reportData)
SortBySalesDescending (RECEIVES: reportData)
SortBySalesAscending (RECEIVES: reportData)
SortBySalesPersonAscending (RECEIVES: reportData)

o U kA W N oH

SortBySalesPersonDescending (RECEIVES: reportData)

If we want to view the report by date in ascending order, then we would have
to call the appropriate function:

CALL SortByDateAscending(reportData)

Each report view would have it's own specific function. This works fine, but you
could further refine this by applying abstraction to reduce these 6 functions
down to 3 functions. How? Each main report has two variants: sorting by
ascending or descending order. We can take the concept of sorting by
ascending or descending and merge this logic into one function for
each main report view.

1. sortBybate (RECEIVES: reportData)
2. SortBySales (RECEIVES: reportData)
3. SortBySalesPerson (RECEIVES: reportData)

But wait - how can we use these functions to get the desired sorting order?
Simple! We would send an additional variable or value to the respective

function that would instruct the function the desired sort order. Let's update
the functions now to include the extra information:

1. SortBybate (RECEIVES: reportData, sortOrder)
2. SortBySales (RECEIVES: reportData, sortOrder)

3. SortBySalesPerson (RECEIVES: reportData, sortOrder)

Now, when we call a report function we can send both the reportbata AND
include another piece of information that specifies the desired sortOrder . The
function will use the sortorder variable to determine the desired sorting
order. Let's try it again now with this new abstracted function for the
SortByDate:

CALL SortByDate(reportData, "ASCENDING")

When we call the function providing the "ASCENDING" value, it is assigned to
the variable sortorder which the function will use to evaluate what order to
sort the report.

Are we done yet? Could this be abstracted even further? YES! The primary
concept being implemented in these functions is to sort data by a specific field
(attribute) of data. We can apply the same idea as we did for the sortOrder and
add another piece of information to send the function which would specify the
field or attribute of the data to sort on! If we added this extra piece of
information, we can now reduce these three functions down to ONE! Here's
what it would look like:

SortReport (RECEIVES: reportData, field, sortOrder)

With this function, it can be called in many different ways but no matter what,
it will sort the data based on the field we want and in the ascending or
descending order using the conditions we send to the function that are
captured in the variables: field and sortOrder . If we want the report to be

sorted by salesperson in descending order, we can call the function like this:

CALL SortReport(reportData, "salesperson", "DESCENDING")

Q SuMMARY

Abstraction is the process of simplifying something back to a general
concept or idea.

A\ cAuTION

Sometimes abstraction can be over-applied (just because you can abstract
something doesn't necessarily mean you should). There are varying scales
at which you should apply it and is always evaluated on a case-by-case
basis. If the abstraction creates too much additional complexity then you
should reevaluate and find another approach.

In the above example, where the second level of abstraction was applied
where we reduced three functions down to one function, might have taken
it too far as that function is now a lot more complex. Perhaps leaving it at
the first level of abstraction having three functions would be more suitable
and manageable to maintain (but is certainly better than the original six
functions!).

Algorithm

An algorithm is ultimately what we are trying to accomplish. An algorithm is
a complete set of instructions in the sequence they must occur to
solve a problem. Algorithms describe in detail how the logic works step-by-
step. This is what would be provided to a programmer to code a solution.

The scope of an algorithm can be small or vast depending on the problem it is
addressing. When we decompose larger problems into smaller ones, each
smaller one (ex: function) has its own algorithm, but when we design the
'main' function that orchestrates the overall solution, it will tie together other
algorithms (functions) as required to provide a full set of instructions for the
entire solution.

Since algorithms detail a solution, they must be tested to ensure it in-fact
provides a working solution to the entire problem and stays within the scope of
the problem (see next sub-section on Testing).

To manage and communicate algorithms, programmers primarily use
pseudocode as it is more efficient to work with and can provide more detail.
However, flowcharts are used to provide a higher level view of the solution
and is generally less detailed due to the complexity of the layout using
graphical symbols. These forms of communicating logic will be covered in the
next major section (Documenting Logic).

Testing

Testing should be done repeatedly throughout all parts of the
computational thinking model. The scale at which you test will depend on
what it is you need to test. Making changes to established logic for instance
would be one such time to do a concentrated and focused test to ensure the
changes didn't break anything or cause other unforeseen side-effects.

The more targeted and frequent your testing is, the better your solution will be.

However in reality, we usually do not have enough time to do extensive
detailed testing, so we must be efficient about how and what we test
(something you get better at in time).

What we minimally should test are all the known major logic flows that
must occur to solve the problem and as the application would be used by
users the majority of the time. We accomplish this by creating "use-cases".
These are the expected and common scenario's that would occur in the
execution of the solution. Prioritizing the features and critical logic parts of the
solution that are used the most by users will validate and ensure the solution is
mostly bug-free and confirms it actually solves the problem.

Testing is where we often reveal weaknesses in the logic and where
applications mostly fail, is in the unexpected things! After the core logic of the
solution is tested, you would move on to more robust testing and include out
of the norm conditions. One way to target this is the ask "what if.." and
run that scenario through your solution to see if it works as expected. Be
warned, once you start looking for exceptions and asking "what if", this can
take you well beyond what is "reasonable" to test so know when to stop and
when you have reached the "obscure" that goes well-beyond normal
exceptions.

Summary

In summary, programmers should plan a solution applying the computational
thinking model BEFORE starting any coding. Planning ahead and having a
framework to work from accelerates your coding time and results in
substantially fewer errors since the difficult part of determining the logic
and flow of the solution is already done. As a programmer, the coding part
should only involve the syntax and implementation of the logic based
on a prepared plan.

The extent to which you apply the computational model will vary depending on

the problem. All parts of the model are important and will lead to great
improvements in your skills to build solutions, however a couple of the parts
are mandatory and you should definitely get in the habit of doing the following
ALWAYS:

* Understand the problem

* Decomposition

The other parts may take time and repetition in applying the concepts before
you get comfortable and more skilled at using them. Abstraction is probably
the most challenging of them because often it can be over-applied (just
because you can abstract something doesn't necessarily mean you should, and
there are varying scales at which you can apply it).

The act of coding a solution into a program should actually be the least
time consuming part of a project. If you find otherwise, it likely means you
aren't working from a planned solution, or the prepared logical plan is poorly
done and needs more work.

It is always worth the time to fix the plan than it is to waste significant time
debugging and rearranging your code after it's been coded!

Documenting Logic

Overview

The previous section on computational thinking focused on the computational
thinking model and how it applies to the problem solving process. Now, lets
focus on how we will document and communicate logic.

There are many possible ways to document and communicate algorithms,
however these notes will be focused on two very popular methods:

1. Flowchart

2. Pseudocode

® NOTE

For the purposes of these notes, we'll be using flowcharts to communicate
a simplified view of an algorithm and pseudo code for communicating the
details of an algorithm.

It was stated in the introduction to these notes, we will not be concerned with
any specific programming language syntax (language agnostic) and will be
focused primarily on the logic.

In staying with this theme and to establish consistency and clear program-
language agnostic communication of algorithms, a minimal set of
guidelines will need to be applied for each of these methods.

https://seneca-scpa.github.io/Applied-Problem-Solving/

Flowchart

Flowcharts are highly visual as they are constructed with graphical symbols to
represent information and process flows (algorithms) in a more simplified

view.

Flowcharts are much more challenging to construct for complex detailed
algorithms given the intensive application of graphical components - it can
sometimes take more time to arrange the graphical symbols than it did to
create the entire algorithm!

Flowcharts are used primarily for two purposes:

1. To illustrate technical algorithms to non-technical persons.

o Flowcharts are a great way to communicate algorithms and technical
information to non-technical persons who are not programmers or
those who only need to have an overview of the algorithm and not the
lower-level details.

2. For technical persons to view detailed algorithms from a different
perspective
o Technical persons like programmers will often use flowcharting to view
a smaller more specific part of an algorithm to better understand it
from a different perspective and to better "visualize" it. This often
sparks more creative ways to address logic.

o Note: Flowcharts with detailed algorithms is outside the scope of these
notes and will not be covered.

Given these notes will be focused on purpose #1, this will limit a solution to
having only one flowchart providing a simplified outline of the main algorithm
needed to solve a problem. The flowchart will be an abstraction of the overall
solution providing enough information to non-technical persons of the intent

and major logic flows of the solution.

Graphical Symbols

Flowcharts are actually standardized by the International Organization for
Standardization ISO and depending on the sector/field of discipline and type of
information you are using flowcharts for, will have its own set of standardized
symbols that should be used. Overall there is an extensive library of symbols
representing very specific meaning and should be used when appropriate.

To stay within the scope of these notes, a very limited set of the most common
symbols will be used:

Symbol- L.
Symbol-Image Description
Shape

Squashed Start of the algorithm (with

Oval function name)

Squashed

End of the algorithm
Oval

Simple Process

or Rectangle Simple process or action
Action

https://www.iso.org/home.html

Symbol-Iimage

Complex Function

YES NO

TRUE FALSE

some other flow description

>

Simple Example

Symbol-
Shape

Striped
Rectangle

Diamond

Text Label

Lines with
Arrows

Description

Complex function
(a pseudocode function or a
closed-box process)

Decision (change in logical
flow)

Text to describe decision
output flow
(placed on top of the line)

Flow direction used to join
symbols

(indicates the next symbol to
execute)

Throughout the notes as programming logic is introduced, detailed examples
applying the guidelines will be provided. In the meantime, here's a simple
example to give you some idea of what flowcharting is about.

DECLARE
horseCount
sheepCount

avgSpacePerAnimal = 10 (m2)

!

RESET Counters
horseCount =0

sheepCount =0

!

Determine the number of horses at the farm
CALL: GetAnimalCount
("HORSE")

!

Assign the returned value to:
horseCount

!

Determine the number of sheep at the farm
CALL: GetAnimalCount

("SHEEP")

!

Assign the returned value to:
sheepCount

!

DISPLAY: The Estimated Yard Size Needed
CALL: EstimatedYardSize

(horseCount+sheepCount, avgSpacePerAnimal)

|

Pseudocode

Pseudocode is a programmer's go-to choice for documenting algorithms. This
is because of how flexible it is to modify and reorganize logic which is a very
common activity when creating algorithms. Unlike flowcharts which is
graphical, pseudocode is textual and describes logic with concise clear
human-language (English in this case). It is also easy to copy/paste the
content directly into your code file to work from.

"Pseudo" meaning not genuine or false, indicates this type of describing logic is
not genuine code (staying true to our rule of not programming in any specific
language). Pseudocode can be more technical than flowcharts, but does not
use any programming language specific syntax, but instead, describes the
logical intent at the level programmers can use to program the logic
to any programming language desired.

Pseudocode can be constructed in many different ways and generally we all
have our own stylistic way of doing it but as mentioned in the overview, there
will be some guidelines applied for the sake of consistency and clear
communication. The guidelines described in these notes are minimal but
effective general rules that are a good base to work from while you eventually
establish your own style.

General Guidelines

Guideline Description

_ Each step or instruction should have a corresponding
Enumeration o ,
sequence number or letter. When nested logic is applied,

Guideline Description

enumeration resets using the opposite number or letter
seguence.

The term nesting will be explained later, but it is crucial to
Indentation consistently indent (or TAB) each level of logic that is

nested.

Overall horizontal left-alignment is critical to keeping
statements organized and easily identifiable and how each

Alignment , ,
statement is related to or apart of other parts of logic
(especially when nesting).
Logic should flow naturally to the next step. You should not
Flow- have instructions that state "continue to the next step" as
through this is the natural sequence when one statement ends, it
Logic automatically assumes to continue to the next statement in
sequence.
Logic flow needs to be carefully managed and NEVER apply
Jump "jJump statements" which direct logic to jump ahead

Statements skipping many steps. Example: if step #5 instructs "GO TO
step #99" this is extremely poor design and not acceptable!

Simple Example

As mentioned in the flowchart section, throughout the notes as programming
logic is introduced, detailed examples applying the guidelines will be provided.
In the meantime, here's a simple example to give you some idea of what

pseudo coding is about.

This example has two functions defined that were referenced from the
preceding flowchart example above.

Description/Purpose:
Prompts the user to increment a counter for the animalType
specified by given argument and returns the count value

Argument(s) : animalType (a string representing the animal type)

Return Value: count (# of animals counted: whole number)

GetAnimalCount (animalType)

1. DECLARE:
count = 0

2. DISPLAY:
"Tap the [ADD 1] button to add 1 to the counter or
[DONE] when you are finished counting

<animalType> Count:<count> BUTTON: [ADD 1]
BUTTON: [DONE]"

3. Which button was tapped?
A. ADD
1. ASSIGN: count = count + 1 <---- Note: Add 1 to the
count
2. REPEAT: from step 2

B. DONE
1. DISPLAY:
"Are you sure?

Description/Purpose:
Calculates the estimated yard size required based on the
received number of animals and average space used by a single
animal. The resulting calculated area is returned. This also
factors optional water trough and feeding trough options.

Argument(s) : totalAnimals (whole number)
spacePerAnimal (average area required for a
single animal)

Return Value: area (calculated total area needed for all animals)

EstimatedYardSize(totalAnimals, spacePerAnimal)

1. DECLARE:
feedTrough = 3
waterTrough = 6
estAnimalSpace = <totalAnimals> * <spacePerAnimal>

2. DISPLAY:
"Do you need a feeding trough?
BUTTON: [YES]
BUTTON: [NO]"

3. Which button was tapped?
A. NO:
1. ASSIGN: feedTrough = 0

4. DISPLAY:
"Do you need a water trough?
BUTTON: [YES]
BUTTON: [NO]"

5. Which button was tapped?
A. NO:

Variables

Overview

As introduced in the Computational Thinking: Data Representation section,
variables are named placeholders which can be referred to within the solution
to access specific information by name to refer to a value.

Variables are critical in providing our solutions the ability to not just store, but
use information to help determine logical pathways (selection which is covered
later). Information can be simple and straight forward, but it can also be very
complex. The more complex data representation will be covered much later in
these notes, but in this section we'll concentrate on simple data representation
and how variables are used in both flowchart and pseudocode methods of
documentation.

Many programming languages are "typed" in that you must indicate the type
of information the variable must represent (example: whole number, fractional
number, characters etc.), but not all languages require this extra level of
detail. Sticking with the "language agnostic" theme, we will not be including
type information when we declare and use variables.

Terminology

Term Meaning

IDENTIFIER The name of the variable.

Term Meaning

DECLARE To create a variable which will include the IDENTIFIER.

ASSIGN To store a value to a variable.

To both DECLARE and ASSIGN a value to a variable in one
step.

INITIALIZE

Variable Identifiers (name)

Variable identifiers should be well thought out and purposefully named to best
describe the information it will be representing. It is important to apply this to
your actual programming as well! Providing meaningful names to your
variables will contribute towards easier to read and manage logic (or code).
However, we need to be mindful of efficiency as we don't want to be referring
to very long names (and in the case of programming code, we don't want to be
typing them either!), so we try to use a style of shorthand to shorten the
names enough without losing the context.

For instance, if we need to represent information about a customer's primary
phone number and an alternate phone number, we wouldn't want to be too
descriptive:

DECLARE:
customerPrimaryPhoneNumber
customerAlternatePhoneNumber

We would instead shorten the words to abbreviations but not to the point

where we still can't understand what they are:

Pseudocode
1. DECLARE:
custPriPhone
custAltPhone
2. End
Flowchart

DECLARE
custPriPhone

custAltPhone

As you immerse yourself in this industry, you will continue to learn many
typical shorthand naming conventions for various information. You will get
better in time and practice!

Something you may have noticed is the use of upper and lower case
characters to help discern between words. This is a common naming practice
("lower camel case" - wikipedia) in programming which we will be applying in
these notes as well.

https://en.wikipedia.org/wiki/Camel_case

Organization

Sometimes we need to manage a lot of information which can lead to the use
of many variables. It is a standard practice to group logically related
variables together and as needed, using a combination of lines and line-
spacing. Grouping variables help readers find variables quickly and this helps
confirm you have variables for all the data you will need representation for.

Scenario: A solution needs to represent address information for a customer
and a distributor. How would you breakdown this information into appropriate

variables?

Pseudocode

1. DECLARE:

custStreetNum, custStreetName, custAptUnit, custCity,
custPostalZip, custCountry

distStreetNum, distStreetName, distAptUnit, distCity,
distPostalzip, distCountry

2. End

Flowchart

Start
main

Start
main Y
DECLARE
y
. custStreetNum, custStreetName, custAptUnit,
DECLARE

custCity, custPostalZip, custCountry
custStreetNum, custStreetName, custAptUnit,

custCity, custPostalZip, custCountry O R
L4

distStreetNum, distStreetName, distAptUnit, DECLARE
distCity, distPostalZip, distCountry

distStreetNum, distStreetName, distAptUnit,
, distCity, distPostalZip, distCountry

End

Y

End

These variables are grouped by customer then by distributor and
separating these two independent groups with a line break. Organizing the
variables like this makes it super easy to find and confirm the data
representation for each key piece of information.

@& DON'T DO THIS

What you don't want to do is declare every variable on a single line in
random order! This is very confusing and benefits nobody:

Pseudocode

1. DECLARE:

distPostalzZip, custStreetNum, distCity, distAptUnit,
custStreetName, distStreetNum, custAptUnit, custCity,
custPostalzip, distStreetName, custCountry, distCountry

2. End

Flowchart

DECLARE
distPostalZip, custStreetNum, distCity, distAptUnit,
custStreetName, distStreetNum, custAptUnit, custCity,
custPostalZip, distStreetName, custCountry, distCountry

Modularity with
Functions

Overview

Modularity is an important aspect of programming as it provides flexibility in
orchestrating logic needed for efficient reusability and efficient management of
solution components. The most common component of modularity is the use of

functions.

Functions represent algorithms comprised of several logical steps which
perform a specific task. Functions are defined once and in one place. This is
what makes it efficient and simpler to manage since modifications and trouble
shooting bugs directs you to a single source.

When it's time to construct a complete solution, it is nice to be able to
reference functions which do all the work (hiding the details) and simplifies the
overall readability of the instructions so long as good naming practices have
been applied.

Sometimes access to the composition of a function may not be possible. When
you don't have access to the details of a function we refer to this as a closed-

box.

() REMINDER

As mentioned in the Computational Thinking sections on:

* Decomposition: Functions are mostly identified when going through

the process of breaking things down into smaller logical parts.

» Pattern Recognition: Is another area where functions may be identified
where you can extract a common piece of logic that can be reused in
multiple places throughout the solution.

» Abstraction: Usually based on a pattern of functions where the
concept is the same and can be combined to simplify the usability of a
single function.

Function Identifiers (name)

Similarly, as variable identifiers should be well thought out and purposefully
named to best describe the information it will be representing, so should the
function naming process. Variables are related to DATA, but functions are
related to ACTION. Therefore, function identifiers should be well
thought out and purposefully named to best describe their logical
purpose and action. Providing meaningful names to functions will contribute
towards easier to read and manage logic (or code).

Reading logic that is applying functions should be like reading a standard
sentence or close to it. There should be no mystery of WHAT the function's
purpose is based on it's name however, like in variable naming practices, we
need to be mindful of efficiency as we don't want to be referring to excessively
long names (and in the case of programming code, we don't want to be typing
them either!). That being said, unlike variable naming, function names can be
a little longer given the importance of having the name best represent WHAT it
does so we don't want to over abbreviate.

For example, if we need a function to write program data to a file in JSON
format we could create a function with the following signature:

* Function: wWriteDataJSON (data)
* Parameter: data is what will be written to file in JSON format

e Returns: TRUE (success) or FALSE (fail)

Here's an excerpt of how it would be called:

1. DECLARE:
data
result

2. -> 99. [logic capturing a lot of information stored to 'data'

]

100. ASSIGN: result = WriteDataJSON (data)
101. Was the data successfully exported to a file?
A. result=TRUE:
1. DISPLAY:
"Data exported to JSON file!"
B. result=FALSE:
1. DISPLAY:
"FAILED to write to file."
102. End

Now let's consider a poorly named function that writes data to a JSON
formatted file. If we replaced the name with FormatDataJSON (data) . While
not totally incorrect, it does not reveal the fact that data is written to a file
which the term "Write" successfully conveys. Another poor name would be
StoreData (data) - this does not reveal the formatting standard used to save

the data and the term Store can also refer to variables not files.

@& DON'T DO THIS
Do NOT obfuscate function names as this renders them meaningless to
the logic if you can't easily understand a functions purpose based on the

name alone:

e a (data)
e HorseGoat (data)
e abcdef (data)

These functions are not usable since we don't know what their purpose is
based on their names!

Function Documentation

Functions should be BRIEFLY described to elaborate more on WHAT the
purpose of the function is to expand on the name itself (the names alone are
usually not enough). This would include parameter(s) (expected arguments)

and return value.

This is a very important aspect of programming especially when you get into
collaborative coding and sharing of custom libraries like API's (Application
Programming Interface). Functions need to be summarized so the use of the
function is clear and other programmers will know how to properly apply the
function.

® NOTE

For the purposes of these notes, pseudocode functions will be
documented with a series of dashes: ------ before and after the

description.

See the below sub-section on Returning Information for some examples.
Going forward, all examples will demonstrate function level

documentation accordingly.

Flowchart functions will almost always be the main function and
generally will not require any documentation unless it is specific to an
example requiring further detail.

Here is the template:

Description/Purpose:
[Provide a brief description of the function's purpose]

Argument(s) : [List each parameter/expected argument and if
needed, a brief associated description]
Example:
[param-1: describe briefly what this is for]

[param-2: describe briefly what this is for]

Return Value: [Describe possible return values if applicable]

[FunctionName] ([Parameter(s)])

1. [list of steps...]

Closed-Boxes

There will be times when we need to use 3rd-party logic (known as API's :

Application Programming Interface) or other prepared logic from system
library functions where we don't have access to the details of how they
work.

These functions are known as "closed-boxes" (formerly "black boxes").
Closed-box functions are like "magic" because you call them and they do what
you expect without explicitly knowing how it performed the task. It is important
to note, sometimes this can be a problem because if there is a bug (error) or a
missing piece of functionality in that piece of logic, there is nothing you can do
to address it other than to redefine your own version of that logic in your own
composed function.

Q How-TO

If you are calling a closed-box function from a flowchart, use the striped

rectangle symbol to represent a complex function.

High-Level Functions

High-level functions are usually highly abstracted in that they can represent a
lot of functionality/logic usually because this type of function will call many
other functions to complete its task. This is like seeing the solution from "a
birds eye view".

One such function that is commonly required in many programming languages
is "main" which behaves as the entry-point to the application (or where the
logic begins and typically ends).

A NOTE

For the purposes of these notes, we'll be designating a flowchart to

always represent this higher-level view of the overall solution. The
directive of a flowchart is to describe an overall set of instructions in a
simple to understand format for non-technical persons, so it is a natural
and suitable application of a flowchart.

Low-Level Functions

Unlike high-level functions, lower-level functions are a lot more focused and
detailed on a task that is highly limited in scope - most functions fit this
category and are constructed to be reusable or to remove complexity from
other larger scoped functions.

A NOTE

For the purposes of these notes, we'll be designating pseudocode to
always represent these lower-level detailed parts of the solution
algorithm.

Passing Information

Functions usually require information to be provided or sent to it to do its task.
When a function requires information, it is constructed with one or more
parameters. Parameter is a fancy term used that essentially means a
variable.

For example, if we create a function that is responsible for displaying the date
and time in a standard 1SO 8601 format (YYYY-MM-DD HH:MM:SS), the function
would require all six of those specific parts of data to be supplied:

DisplayDateTime (year, month, day, hour, minute, second)

The comma delimited list of the date and time parts are the parameters. The
parameters act as variables which can be used in the function logic to access
the values sent to the function.

When it comes time to use this function, we will CALL it and supply the
function with the information it requires (we call this "passing" data to a
function) in the form of arguments. An argument is a value sent to a function.

Since the DisplaybateTime function has six parameters, we will need to
send six arguments in the order it is expecting it:

CALL: DisplayDateTime (2025, 10, 25, 11, 53, 45)

DisplayDateTime (year, month, day, hour, minute, second)

RN

CALL: DisplayDateTime (2025, 10, 25, 11, 53, 45)

Each argument sent to the function will be assigned to the corresponding
parameter variable and then the function would construct the output
assembling the variables into their appropriate sequence:

year-month-day hour:minute:second

The expected outcome of this function call, would be to display the date time
data as:

2025-10-25 11:53:45

Returning Information

Functions often do more than just an explicit task - it is quite common for
information to be returned to the caller of the function (ex: back to where the
function was called from). Most programming languages support flexible
methods in how information can be returned from a function:

1. Explicit
2. Implicit
3. Both explicit and implicit

Let's have a look at these methods and how they will be documented in
pseudocode.

Q) REMINDER

Since these notes will be limiting the use of flowcharts to the main
overview process only, we won't need to concern ourselves with
documenting return values for flowcharting.

Explicit Return

Returning information from a function explicitly is accomplished by using the
keyword: return. This method provides a single variable of information to
be returned from the function.

For example, if we have a function: Multiply (number, multiple) which will
return the results of multplying the provided number by the provided

multiple, the logic would look like the following:

Function: Multiply (number, multiple)

Description/Purpose:
Demonstration of a function that returns a value implicitly.

Argument(s) : number (operand 1 to be multiplied)

multiple (operand 2 to be multiplied)
Return Value: result of the multiplication

Multiply (number, multiple)

1. DECLARE:
result

2. ASSIGN: result = number * multiple
3. RETURN result

4. End

This can be refined by not creating a variable:

Multiply (number, multiple)
1. RETURN number * multiple

2. End

Here is how the function can be used from a flowchart:

DECLARE
coffeePrice = 2.99

total

Determine the total of buying
FIVE

CALL: Multiply(cofeePrice, 5)

l

Assign the returned value to:
total

l

DISPLAY
"The cost of 5 coffee's is: $<total="

Here is how the function can be used from pseudocode.

Function: main()

Description/Purpose:
Demonstration of calling a function "Multiply" that returns
a value explicitly.

Argument(s) : NONE
Return Value: NONE

main()

1. DECLARE:
coffeePrice = 2.99
total

2. ASSIGN: total = CALL: Multiply(coffeePrice, 5)

3. DISPLAY:
"The cost of 5 coffee's is: $<total>"

4, End

Implicit Return

Returning information implicitly involves updating a parameter variable. The
understanding with this method is that any changes made to a parameter
variable will directly affect the original. This can simplify how return values are
documented but also can lead to missed data changes since it is not as clear.

Let's do another version of the preceding example using this method (notice
the extra parameter total).

Function: Multiply (number, multiple, total)

Description/Purpose:
Demonstration of a function that returns a value implicitly.

Argument(s) : number (operand 1 to be multiplied)
multiple (operand 2 to be multiplied)

total (result of multiplication)
Return Value: NONE

Function: Multiply (number, multiple, total)
1. ASSIGN: total = number * multiple

2. End

The total parameter variable was used as the return value from the function
by assigning the result of the calculation to that variable.

Here is how the function can be used from a flowchart:

DECLARE
coffeePrice = 2.99

total

Determine the total of buying FIVE
CALL: Multiply({cofeePrice, 5, total)

l

DISPLAY
"The cost of 5 coffee's is: $<total>="

Here is how the function can be used from pseudocode.

Function: main()

Description/Purpose:
Demonstration of calling a function "Multiply" that returns
a value implicitly.

The advantage of implicit returns is it is not limited to a single variable return
value like the explicit method. The implicit method, can return multiple
values through more than one parameter variable!

() NOTE

Some programming languages refer to implicit return values through
parameters as:

* output parameters
* pointers

* references

Both Explicit AND Implicit Returns

A combination of explicit and implicit methods can be done too! Expanding on
the preceding examples, we will add a tax component. The calculated tax
amount will be returned implicitly via the tax parameter and the total
(including tax) will be returned explicitly:

Function: Multiply (number, multiple, tax)

Description/Purpose:
Demonstration of a function that returns values applying both
the implicit and explicit methods.

Argument(s) : number (operand 1 to be multiplied)
multiple (operand 2 to be multiplied)
tax (result of tax portion)

Return Value: total including tax

Here is how the function can be used from a flowchart:

Start
main

Y
DECLARE
coffeePrice = 2.99
tax
total

l

Determine the taxes and total of buying FIVE
coffee's

CALL: MultiplWcofeePrice, 5, tax)

l

Assign the returned value to:

total
DISPLAY
"The cost of a coffee 1is: $<coffeePrice>
The tax for 5 coffee's 1is: $<tax>

The total for 5 coffee's 1s: $<total>"

l
C o)

Here is how the function can be used from pseudocode:

Function: main()

Description/Purpose:
Demonstration of calling a function "Multiply" that returns
values applying both implicit and explicit methods.

Argument(s) : NONE
Return Value: NONE

main()

1. DECLARE:
coffeePrice = 2.99
tax
total

2. ASSIGN: total = CALL: Multiply(coffeePrice, 5, tax)

3. DISPLAY:
"The cost of a coffee is: $<coffeePrice>
The tax for 5 coffee's is: $<tax>

The total for 5 coffee's is: $<total>"

4., End

@& WARNING

As you can see in this example, it can be easy to "miss" how the tax is
assigned because it is IMPLICITLY updated by the function.

Logic - Selection

Overview

Computers programs are not very useful without the ability to adjust to
changing conditions. A mechanism is therefore needed to enable programs the
ability to evaluate when to change logical direction which can include
executing specific logic and/or to avoid specific logic.

The concept of Selection is what provides programs the ability to apply logical
decisions which can alter the execution sequence. There are several variations
of selection (especially when coding it in a specific computer language),
however the main three logical flows will be examined here.

Optional Selection

Optional selection provides a program the ability to execute additional logic
to do something only if one or more conditions are determined TRUE,
otherwise, the main program logic continues as normal.

Let's review part of a program where the total yearly rainfall is being evaluated
to see if it has set a new record. The program should update the highest record

only when the yearly rainfall amount is determined to be more than the last
known record. The logic to update the record should only occur if the yearly
rainfall has been determined to be greater than the last known record. If the
yearly rainfall is 325 mm and the last known record is 310 mm, we should
expect the logic to update the record to the new value, otherwise, do nothing
(continue with the normal program logic).

Flowchart

Here is how it would be done in a flowchart:

DECLARE
yearlyMM = 325
recordMi = 310

) J

DISPLAY
"Current yearly rainfall: <yearlyMM> mm
Highest recorded rainfall: <recordMM> mm"

Is a
NEW RECORD set?
(yearlyMM = recordMM)

DISPLAY
YES "A new yearly record has been set!”

-

. Continue with program logic

End

A NOTE

* Notice the DIAMOND shape for the selection decision.

* The question is using concise non-technical language.

* The technical part (optional) has less emphasis and is in smaller font.

* Something "extra" only occurs if it is evaluated to TRUE (yes).

Pseudocode
Here is the pseudocode equivalent.

Function: main()

Description/Purpose:
Demonstration of optional selection.

Argument(s) : NONE
Return Value: NONE

main()
1. DECLARE
yearlyMM = 325
recordMM = 310
2. DISPLAY:
"Current yearly rainfall: <year lyMM> mm

Highest recorded rainfall: <recordMM> mm"

3. Is yearlyMM > recordMM ?
A. YES:
1. ASSIGN: recordMM = year LyMM
2. DISPLAY:
"A new yearly record has been set!"

The program will only (optionally) update the record and display a message
indicating a new record was set if the current year's rainfall is higher than
the previous set record. The expression in step #3 is "selection" where a
TRUE or FALSE condition is being evaluated and based on that determination,

extra logic may be executed.

A NOTE

* Notice the text 'label' YES: used to identify the answer to the
selection question?
* Notice the logic indentation (TAB) consistency of the pseudocode?

* Notice how the enumeration changed from numbers (1...2...) to
characters (a...b...) when the 'inner logic' is sequenced?

It is important to maintain easy to read logic in pseudocode especially
when nested statements are involved.

The nested statements in this example is where the group of statements
are placed under the YES: logic path.

Alternative Selection

Alternative selection is like a 'Y' in the road where a decision must be made

and no matter what only one of two different logic paths will be executed
but not both.

Continuing with the preceding example, the application will now display an

outcome no matter what. EITHER a new rainfall record was set, OR a new
record was NOT set.

Flowchart

Here is how it would be done in a flowchart:

Start
main

b

DECLARE
yearlyMM = 325
recordMM = 310

v

DISPLAY
"Current yearly rainfall: <yearlyMM> mm
Highest recorded rainfall: <recordMM> mm"

DISPLAY

"Did NOT set a new record!"

Isa
NEW RECORD set?

(yearyMM = recordMM) YES

DISPLAY

"A new yearly record has been set!”

Y

Pseudocode

... Continue with program logic ...

End

And here is how it would be done in pseudocode.

Function: main()

F

Description/Purpose:

Demonstration of alternative selection.

NONE
NONE

Argument(s)
Return Value:

Multiple Alternative Selection

Multiple alternative selection is like an 'E' in the road where a decision must
be made and no matter what only one of THREE or more different logic
paths will be executed but not all.

Continuing with the preceding example, the application will display an outcome
no matter what for only one of these three possibilities:

1. A new rainfall record was set.
2. The current year rainfall TIED with the highest record.

3. A new record was NOT set.

Flowchart

Here is how it would be done in a flowchart:

DECLARE
yearlyM = 325
recordMM = 310

A 4

DISPLAY
"Current yearly rainfall: <yearlyMM> mm
Highest recorded rainfall: <recordMM> mm"

What is the
State of the Current Year
Rainfall?

DISPLAY
"Did NOT set a new record!™

DISPLAY
"A new yearly record has been set!”

Less than the Record
(yearlyMM < recordMM)

New Record Set
(yearlyMM > recordMM)

Tied Record
(yearlyMM == recordMM)

DISPLAY
"TIED the highest record!™

A 4

.. Continue with program logic

A

Pseudocode
And here is how it would be done in pseudocode.

Function: main()

Description/Purpose:
Demonstration of multiple alternative selection.

Argument(s) : NONE
Return Value: NONE

Nested Selection

Nesting is a way to sequence statements or logic constructs such as selection
and iteration within another logical construct. It is a way to group
statements or other logic under a dependency. In the case of selection, this
would mean anything intended to execute when the selection statement is
evaluated to TRUE, would be nested within the limits of the selection.

Using the preceding example on yearly rainfall, let's say we want to have
different levels of "excitement" when a new rainfall record is determined. If the
old record is beat within 10 mm (inclusive), then we want to state: "A new
record has been set!", but when it is beaten by more than 10 mm, we want it
to state: "WOW! The old record was blown away and a new record has been

set!",

Implementing this, would require logic to be placed within the section where it
is determined the record was beaten - this would be nested selection!

Flowchart

DECLARE
yearlyMM = 325
recordMM = 310
delta

l

DISPLAY
“Current yearly rainfall: <yearlyMM> mm
Highest recorded rainfall: <recordMM> mm"”

DISPLAY Whatis the DISPLAY
. . State of the Current Year > N ; .
Did NOT set a new record! Less than the Record Rainfall? Tied Record TIED the highest record!

(yearlyMM < recordhil) (yearlyMM == recordMM)

New Record Set
(yearlyMM > recordMM)

Calculate How Much More
(ASSIGN: delta = yearlyMM - recordMM)

}

DISPLAY
DISPLAY Is the record beaten

—>"WOW! Th 1d d b1 d
“A new yearly record has been set!” by more than 10mm? © o.d recon waf" i iy ewl A
NO YES new record has been set!

A

> _.. Continue with program logic ...

The golden highlighted section encompasses the nested selection which is
only executed if the parent selection that tests for a beaten record evaluates to
TRUE.

Pseudocode

Function: main()

Description/Purpose:
Demonstration of nested selection.

Argument(s) : NONE
Return Value: NONE

main()
1. DECLARE
yearlyMM = 325
recordMM = 310
delta
2. DISPLAY:
"Current yearly rainfall: <year LlyMM> mm

Highest recorded rainfall: <recordMM> mm"

3. What is the state of the current year rainfall?
A. NEW RECORD SET (yearlyMM > recordMM):
1. ASSIGN: delta = yearlyMM - recordMM
2. ASSIGN: recordMM = yearlyMM
3. Is the record beaten by more than 10mm?
A. YES (delta > 10):
1. DISPLAY:
"WOW! The old record was blown away
and a new record has been set!"
B. NO:
1. DISPLAY:
"A new yearly record has been set!"

Step 3. is the outer selection (parent) and sub-step 3.A.3. within the "NEW
RECORD SET" section is the nested selection. Nesting is only executed if the
parent (outer) dependency is evaluated to TRUE.

Testing

As referred to in the computational thinking - testing section, "what-if"
scenarios are used to help test the logic and expected outcomes. Selection is
pivotal to controlling program execution to take the necessary logic paths
required to address all reasonable possibilities and certainly the expected
paths to address the problem.

Semantic failures are often directly tied to selection logic, so it is important you
build strong selection skills - these skills will also help you be a more efficient
and effective problem solver and programmer.

Iteration

Overview

It is very common to have to repeat logic, but as we know from the
computational thinking model (pattern recognition) approach, placing detailed
logic into a function when we know it will be reused or repeated is a good
practice, but is it enough?

Let's say we need logic to manage a list of items for a shopping list. We would
need repeating logic responsible for getting the user input detail for an item
and then add each item to the shopping list (this would be a good use of a
function), but how many items will there be? Will a shopping list always have
the same number of items? Probably not! We can't limit the logic to sequence
a set number of calls to the function that adds a list item because that would
be a pretty useless application (what if you want fewer or more?)!

The problem is how to structure the repeating logic so it can be executed
any number of times (if at all) and yet refer to the logic only ONCE. This
is where the iteration (looping) construct comes in!

To manage a varying possible number of repetitions (iterations/loops), we must
apply iteration constructs. There are many forms of these constructs in
specific programming languages, but the abstraction (idea/concept) itself is the
same with only minor semantic differences. These notes will be focused on the
pure concept of iterating (looping) covering two forms:

1. Optional Iteration

2. Mandatory Iteration

Optional Iteration

Optional iteration is the most common. This involves checking a condition
BEFORE the possible repeating logic to determine if looping is even required
and if so, iterate until no more iterations are required. This could result in:

No iterations

One iteration

Many iterations

Possible infinite iterations

Q) TECHNICAL INSIGHT

DISCLAIMER: Something to note about iteration constructs, is that all
forms can be made to work like the others however each one has its
designed intentions.

Optional iteration found in most programming languages include:

* while

* |for

e foreach

NOTE: These are language-specific terms and will not be used in the
documentation of logic in these notes.

Flowchart

Let's continue with the shopping list theme from the introduction. We want to
create an application that will allow a user to create as many shopping lists as
they want - if any. This will involve iteration since the user can make many lists
but we don't know how many. Because this logic approach is optional-
based, this means it is possible a shopping list may never be created
or many may be created.

NOTE: To help with this example, we will be using a closed-box function
to deal with the details of creating a shopping list where items are added
to a list. Here's an overview of the function:

* Name: CreatelList ()

* This function prompts the user to enter as many items as they wish to
a shopping list.

* The function logic details will be described in the pseudocode section
example.

Image of a flowchart demonstrating
iteration

Pseudocode

NOTE: We will be using a closed-box function that will deal with the
details of obtaining item information and adding it to a list of items. Here's

an overview of the function:

* Name and parameter: AddItem (itemList)

* itemList: Parameter represents the entire shopping list and will
implicitly add an item to that list

Function: CreateList()

Description/Purpose:
Demonstration of optional iteration where zero or more shopping
items can be added to the list.

Argument(s) : NONE
Return Value: NONE

CreatelList()

1. DECLARE:
shoppingList
itemCount = 0
addItem

2. DISPLAY.:
"Do you want to add an item to the shopping list?
[BUTTON: YES] [BUTTON: NO]"

3. ASSIGN: addItem = <user selected button>

4. Keep adding items to the shopping list - which button was
selected?
A. YES (addItem=YES):
1. CALL: AddItem (shoppinglList)
2. ASSIGN: Add 1 to itemCount
3. REPEAT: from Step #2

* The repeating construct begins in step #3. This iteration may never be
executed because it is dependent on the preceding answer to the question
of adding an item to the shopping list. If the user selects the NO button the
first time, then no items will be added to the list however, as long as the
user selects the YES button it will continue iterating adding more items to
the shopping list. As soon as the user selects the NO button, the iteration
will stop.

* Step 3.A.3. is critical as it directs the next executed piece of logic back to
the add another item prompt where repetition will repeat from.

Mandatory Iteration

—>

Mandatory iteration is almost the same as optional iteration with the only
difference being in the placement of the condition. Unlike optional iteration
where the condition is checked first, in mandatory iteration the condition is
placed AFTER the logic that would be repeated and will iterate until no
more iterations are required. This results in:

e At least ONE iteration
* Many iterations

e Possible infinite iterations

Mandatory iteration is usually applied in validation routines where actions
must occur at least once before determining if repeating is required. This form
involves executing some logic first, then checking a condition AFTER to
determine if looping should be repeated until no more iterations are
required.

() TECHNICAL INSIGHT

DISCLAIMER: Something to note about iteration constructs, is that all
forms can be made to work like the others however each one has its
designed intentions.

Mandatory iteration found in most programming languages include:

e do ... while

NOTE: This is a language-specific term and will not be used in the
documentation of logic in these notes.

Flowchart

Let's modify the preceding OPTIONAL iteration flowchart example to be
MANDATORY iteration. This change will mandate the user to enter at
least one shopping list (unlike before where none was possible).

Image of a flowchart demonstrating

iteration
Notice the user is forced to create at least one shopping list because the
option of creating a shopping list was moved AFTER the logic that creates
a list.

Pseudocode

Let's modify the preceding OPTIONAL iteration pseudocode example to be
MANDATORY iteration. This change will mandate the user to add at least
one item to the shopping list (unlike before where none was possible).

Function: CreateList()

Description/Purpose:
Demonstration of mandatory iteration to add at least one
shopping item to the list.

Argument(s) : NONE
Return Value: NONE

CreatelList()
1. DECLARE:
shoppinglList
itemCount = 0
addItem
2. CALL: AddItem (shoppingList)
3. ASSIGN: Add 1 to itemCount
4. DISPLAY:
"Do you want to add another item to the shopping list?

[BUTTON: YES] [BUTTON: NOJ"

5. ASSIGN: addItem = <user selected button>

No matter what, we want the user to add at least one item to the
shopping list so we start with the logic that implements that. We don't
ask the user for the option to add another item until AFTER one has
been added and from there, the user can continue to add as many items
as they wish (repeating from step #2).

Nested Iteration

Nested iterations follow the same concept as a nested selection from the
previous topic - it is where an iteration logic construct is placed within
another construct.

The below example shows a main iteration for a game (outer/parent loop) and
within a game, there is a loop of player moves (this is the nested iteration).
The outcome of a "MakeMove" function call determines if the game is over.
When the game is over, a new game can be started and the entire process
repeats.

Flowchart

Image of nested iteration for playing a
game

Pseudocode
Here is the pseudocode equivalent.

Function: main()

Key Parts:
Step 2. is the main game loop (outer/parent)

Step 2.A.2. isthe NESTED player moves loop that occurs within a game until

it's over

Data Containers &
Collections

Overview

The simplest form of a data container is an array. The concept of an array is a
variable capable of storing many values. All programming languages support
this simplest form of a container, but many object-oriented languages such as
C++, C#, Java, Python, etc., have additional variations mostly referred to as
collections which provide an additional layer of operations (functions) to help
simplify the navigation and management of the data. For the sake of these
notes, and to maintain the language-agnostic theme, we will merge the
concepts of these two major types of data representation as one and refer to it
as a collection for simplification and consistency.

Collection Functions

To simplify how to use the functionality of a collection, this section will define a
limited list of what features a collection provides so we can refer to this as
needed in all future examples.

Navigation Actions

Action Explanation

FIRST This returns the first item in the collection and updates the

Action

LAST

NEXT

PREV

AT

COUNT

Explanation

current position.
If there are no items in the collection, it returns an EMPTY item.

This returns the last item in the collection and updates the
current position.
If there are no items in the collection, it returns an EMPTY item.

This returns the next item in the collection and updates the
current position.
If no more items remain, it returns an EMPTY item.

This returns the previous item in the collection and updates the
current position.
If the current item is the first item, it will return an EMPTY item.

This returns the item at the position stated (zero-based) in the
collection and updates the current position.

This requires an argument for the position and if there is no
item, it will return an EMPTY item.

This returns the number of items in the collection.

NOTE: The default current position is assumed to be at the beginning of the

list.

Manipulation Actions

Action

ADD

DELETE

REPLACE_AT

DELETE_AT

Q NOTE

Explanation

This will add (append) an item to the end of the
collection

and updates the current position.

You must provide the new item data as an argument.

This will remove the current item from the collection.

This will replace an item in the collection at the specified
position (zero-based)

and updates the current position.

You must provide the new item data as an argument, and
the position.

This will remove an item at the position (zero-based)
specified

and updates the current position.

You must provide the position as an argument.

To access these actions (functions), you will need to apply the dot .

operator of the collection variable.

Collection Declaration

Declaring a collection variable will require you to note it is a collection type
and must always initialize it to empty. This is a good practice but also
simplifies how we make the declaration. If we need to create a collection for
storing many student ID's, we would declare as follows:

studentlDs = EMPTY COLLECTION

This notation makes it clear the variable is called studentIDs and that it's a
collection given it's being set to an EMPTY COLLECTION.

Example Scenario

It is very common for an application to manage information/data that supports
many values which may or may not have a known limit to the number of
pieces of data to maintain. For example, if an application is required to manage
student ID's, we would need the application to be able to adapt to the number
of student ID data (which could also involve the adding and removing of
students as part of the features of the application).

We certainly would not want to represent each student ID number as a
separate variable (such as: id1, id2, id3, etc..) since we would not know how
many variables to declare in advance and how would we be able to add more
at runtime?

Ideally, we need a way to simplify how we can represent data as a list. An
important feature for this type of data representation would also include the
ability to adapt to changes in the number of list items (expanding or
contracting in size). This is where the concept of a collection comes in!

() ONE VARIABLE!

Instead of declaring MANY variables for each student ID (and given the
impossibility of how we could even manage varying number of students),
we can use a SINGLE collection variable to represent many student ID's
(as a list)!

We can declare a single collection variable: studentIDs and by
referring to this one variable, we can access many student ID's.

Let's define the process for an application to manage the creation and adding
of student ID's to a collection variable (where the user can enter as many ID's
as desired) with the functionality to display the data stored in the collection
after the data is input. We will use a flowchart to orchestrate the main flow and
pseudocode to describe the detailed parts accordingly.

Flowchart

This is the main function and logic flow.

DECLARE
studentlDs = [EMPTY COLLECTION]
keepAdding

i

Prompt user if they wish to add a
Student ID to the list

CALL : AddAnoctherStudent ()

i

ASS5IGMN: The returned result to:
keepAdding

Add another Student?

(keepidding = TRUE)
NO

Add a new student ID to the list
CALL: AddStudent (studentlDs)

Display the student ID's list
CALL: DisplayStudentData (studentlDs)

|

Pseudocode

There are three functions to be detailed in this example.

Function: AddAnotherStudent()

Description/Purpose:
Prompt the user to confirm if another student ID needs to be
entered.

Argument(s) : **NONE**
Return Value: TRUE for "YES"
FALSE for "NO"

AddAnotherStudent ()

1. DECLARE:
response = FALSE

2. DISPLAY:
"Do you want to add a student ID?"
[BUTTON: YES] [BUTTON: NO]

3. What button was pressed?
A) YES:
1) ASSIGN: response = TRUE
B) NO:
1) ASSIGN: response

FALSE

4. RETURN: response

Function: AddStudent (studentIDs)

Description/Purpose:
Prompt the user to enter the new student ID and add it to the
collection.

Argument(s) : studentIDs (collection variable)
Return Value: Nothing

AddStudent (studentIDs)

1. DECLARE:
newStudentID
2. DISPLAY:

"Enter a new student ID:"
3. ASSIGN: newStudentID = [User entered value]
4. studentIDs.ADD(newStudentID)

5. DISPLAY:
"Student ID added!"

6. End

Function: DisplayStudentData (studentIDs)

Description/Purpose:

Data Structures

Overview

Data structures are an extension of variable types. This is a powerful way to
group related information into a new data type.

For example, if we want to represent a Seneca Student, we could group all the
closely related attributes together into one variable type and make a variable
of this new type which would contain all that related information in a single
variable. For this example, let's say we want to manage the student ID,
program code, and their graduation status.

Structure DEFINITION:

To define a new data structure, it starts with the new type name and followed
by a list of attributes that comprise the new type.

[New Data Structure TYPE name]
- [Attribute 1]

- [Attribute 2]

- [Attribute 3]

- etc.

Here's how the Seneca Student type would be defined.

Pseudocode:

SenecaStudent

Flowchart:

All data structures would be grouped together in their own dedicated section
with each data structure in a separate rectangle.

Data Structures

SenecaStudent

studentlD
programCaode
isGraduated

Creating a new data TYPE called SenecaStudent will enable us to represent
these three attributes of data in a single variable (the student ID, program
code, and the graduation status of the student).

() NOTE

The structure DEFINITION is NOT a variable - it is only describing the
attributes that can be managed (represented) for this new type.

Structure VARIABLE

As mentioned back in the variables topic, data type information (example:
whole number, fractional number, characters etc.) is not supported in all

programming languages and so we are maintaining the language agnostic
approach and not specifying this level of detail when we declare variables.

The exception to this rule is for data structures. To be able to USE a data
structure (based on its definition), we must create a variable including the
type so it will be clear it is not a standard variable.

Using the SenecaStudent structure example, this is how we can declare a

variable of type SenecaStudent:

Pseudocode:

DECLARE:
student = EMPTY (type: SenecaStudent)

Flowchart:

DECLARE
student = EMPTY (type: Senecastudent)

Now that we have a variable called student of type (SenecaStudent), we will
be able to refer to and assign three related pieces of data using this single
variable.

Access Structure Data

Once you have a variable declared that is a structure type, you will need to
provide some extra syntax (.) to access or refer to the attributes.

Accessing the attributes for the variable student from our previous example
(recall, student is of type SenecaStudent), here is how we would display the
three attributes.

Pseudocode:

DISPLAY:
"Student ID: [student.studentID]
Program : [student.programCode]
Graduated?: [student.isGraduated]"

Flowchart:
DISPLAY
"Student ID : [student.studentID]
Program : [student.programCode]
Graduated? : [student.isGraduated]”

Q Fyi

The dot (.) syntax is very common among most programming languages
to access sub-components of an object.

Structure COMPOSITION

Often, we need to include other defined structured data within another
structure as there may be a loosely associated relationship involved. Let's
revisit the previous example to demonstrate what this means.

Every student will have name information associated to their student ID.
Names can be be simple, but they can also have more structure to them such
as:

* First name

e Last name
e Middle name
* Nickname (short version of the name)

e Prefix (ie: Mx., Mr., Mrs., Ms., Master, etc.)
We can update our student example now to include this data representation:

Pseudocode:

NameInfo

- firstName

- lastName

- nickname (short version of the name)

Then add this to our SenecaStudent data structure as a member:

SenecaStudent

- studentID

- name (type: NameInfo)
- programCode

- isGraduated

Q NOTE

Notice the additional attribute after studentID? We explicitly identify the
name attribute as being of a special Nameinfo type.

Flowchart:

Data Structures

Namelnfo SenecaStudent

firstName studentlD

lastfName ham e (type: Namelnfo)

hicknam e program Code
isGraduated

Accessing the details of the name follows the same convention as before, only
now we will need to "drill" down into the data using the . dot notation when
we get to that attribute. Here's how we would display the first and last name of
a student with this new change:

Pseudocode:

DISPLAY:
"Student ID: [student.studentID]
Last Name : [student.name.lastName]
First Name: [student.name.firstName]
Program : [student.programCode]
Graduated?: [student.isGraduated]"

Flowchart:

DISPLAY
"Student ID : [student.studentID]
Last Mame : [student.name.lastHame]
First Hame : [student.name.firstName]
Program : [student.programCode]
Graduated? : [student.isGraduated]”

Q NoTE

Notice the extra level of using the dot (.) to access the attributes of the
name ? Since name is a structure, we need to access its attributes using
the . notation.

Collection of Structures

Now that we have the ability to create structures to better contain related data
- let's look at how you can have a collection of structures. In the above
examples, we have a single student represented in a variable named
"student". What if we want to manage many students? Just as we did in the
introduction to collections, we can specify a collection of a new type

SenecaStudent .

Pseudocode:

DECLARE:
students = EMPTY (Collection of type: SenecaStudent)

Flowchart:

DECLARE
students = EMPTY (Collection of type: SenecaStudent)

Example - Putting it all together!

Here is an example of putting it all together where we will support adding,
removing, and displaying the data for a collection of SenecaStudent data.

Flowchart

This is the main function and logic flow.

Data Structures

Namelnfo
firstName
lastName
nickname

SenecaStudent

studentiD

hame (type: Namelnfo)
programCode
isGraduated

Start
main

\ 4

DECLARE
students = EMPTY (Collection of type: SenecaStudent)
keepAdding

Y

Prompt user if they wish to add a Student to the
list

A

CALL: AddAnotherStudent ()

ASSIGN: The returned result to:
keepAdding

Add another Student?

(keepAdding = TRUE)
NO

YES

Add a new student to the list
CALL:AddStudent (students)

Remove a student from the list
CALL: RemoveStudent (students)

Display the students list
CALL : DisplayStudentData (students)

Pseudocode

First we will define the SenecaStudent data structure and then the four

detailed functions needed in this example.

Data Structures:

NameInfo

- firstName

- lastName

- nickname (short version of the name)

SenecaStudent

- studentID

- name (type: NameInfo)
- programCode

- isGraduated

Description/Purpose:
Prompt the user to confirm if another student needs to be entered.

Argument(s) : **NONE**
Return Value: TRUE for "YES"
FALSE for "NO"

Function: AddStudent (students)

Description/Purpose:
Prompt the user to enter the new student data and add it to
the collection.

Argument(s) : students (Collection of type: SenecaStudent)
Return Value: Nothing

AddStudent (students)

1. DECLARE:
newStudent (Type: SenecaStudent)

2. DISPLAY:
"Enter a student ID:"

3. ASSIGN: newStudent.studentID = [User entered value]

4, DISPLAY:
"Enter the first name:"

5. ASSIGN: newStudent.name.firstName = [User entered value]

6. DISPLAY:
"Enter the last name:"

7. ASSIGN: newStudent.name.lastName = [User entered value]

8. DISPLAY:
"Enter the program code:"

Function: RemoveStudentData (students)

Description/Purpose:
Removes a student from the students collection where it matches
on the user-entered student ID.

Argument(s) : students (Collection of type: SenecaStudent)
Return Value: Nothing

RemoveStudentData (students)

1. DECLARE:
tmpStudent
tmpID
foundMatch = FALSE
keepLooking = TRUE

2. DISPLAY:
"Enter the studentID of the student to remove:"

3. ASSIGN: tmpID = [User entered value]

4. Continue searching the collection? (keepLooking = TRUE)
A) YES:
1. ASSIGN: tmpStudent = students.NEXT
2. Is tmpStudent empty?
A) NO:
1. Does the entered ID match this
student? (tmpStudent.StudentID = tmpID)
A) YES:
1. REMOVE the current student

Function: DisplayStudentData (students)

Description/Purpose:
Display each student in the students collection (iterate/loop).

Argument(s) : students (Collection of type: SenecaStudent)
Return Value: Nothing

DisplayStudentData (students)

1. DECLARE:
tmpStudent
2. DISPLAY:

"Here are the stored students:"
3. ASSIGN: tmpStudent = students.NEXT

4. Is tmpStudent empty?
A) NO:

1. DISPLAY:
"Student ID: [student.studentID]
Last Name : [student.name.lastName]
First Name: [student.name.firstName]
Program : [student.programCode]
Graduated?: [student.isGraduated]" (newline)

2. REPEAT: from Step #3

5. DISPLAY:
"There are [students.COUNT] Student's stored."

6. End

Date and Time

Overview

Working with date and time data can be very tedious depending on how the
data is needed and used in a problem. Almost all programming languages have
supporting libraries to help simplify how we work with this type of information.
Maintaining the language agnostic theme of these notes, this appendix will set
the framework for how date and time data can be used.

CURRENT DateTime Constants

It is common for programmers to access the current date and time
information in solutions. You will need to refer to the keyword " Now" to access
the different attributes of the date and time parts. Below is a table showing all
the parts and how you would access specific date and time parts:

Date/Time Part Result
NOW 2025-06-01 23:59:59
NOW: :Date 2025-06-01
NOW: : Time 23:59:59
NOW: : Year 2025

NOW: :Month 06 OR JUNE or JUN

Date/Time Part Result

NOW: : Day 01 OR MONDAY or MON...
NOW: : Hour 23

NOW: :Minute 59

NOW: : Second 59

Q NOTE

Month and Day parts are ABSTRACTED meaning these can represent
either the numerical or alpha representations (short or long form). This is
for flexibility based on the context in which it is used so it is important
your logic and interface refer to what form these values will be
used.

Example

Displaying some CURRENT date and time parts would be done like this:

Pseudocode:
1. DISPLAY:
"The current date and time is: [NOW]
The current date is [NOW: : Date]
The current time is [NOW:Time]
The current month is [NOW:Month]

The current hour is [NOW: : Hour]"

Flowchart:

C l D

DISPLAY
"The current date and time is: [HOW]
The current date i1svvuu.. [HOW: :Date]
The current time is [HOW: Time]
The current month 1s [HOW:Month]
The current hour 1s ...vuvau.s [HOW: :Hour]"

!
=

VARIABLE of Date and Time

In addition to the CURRENT date and time, we often need to STORE date and
time data which will require the use of a variable. Using a variable to access
various parts of the date and time data, is identical to the preceding CURRENT
date and time section only instead of using Now, the declared variable will be
applied:

Example
Displaying some VARIABLE date and time parts would be done like this:

Pseudocode:

1. DECLARE:
birthDate = 2005-10-31
appStartTime = NOW::Time

2. DISPLAY:
"The current date and time is: [NOW]
Birthdate [birthDate: :Date]
Birthdate month is [birthDate: :Month]

Application start hour
[appStartTime: :Hour]

Application start minute
[appStartTime: :Minute]"

3. End

Flowchart:

C 1 D,

DECLARE
birthDate = 2005-10-31
appStartTime = NOW:Time

!

DISPLAY
"Current date and time is: [HOW]
Birthdate 0 vvun [birthDate::Date]
Birthdate month is [birthDate: :Month]
Application start hour [appstartTime: :Hour]
Application start minute ... [appStartTime::Minute]”

|
D

Timer Logic

Overview

Timers are often needed in programming. There are cases when accuracy is
very important and other cases where approximation is good enough. This
section will be focused on how to accurately apply timer logic.

APPROXIMATE Timer

Many programming languages have libraries to help simplify how time is
tracked and implemented in programs. Among the many features, is usually a
function that can be used to wait or sleep for a specified duration (an
argument would be sent usually in unit seconds or milliseconds). However,
such a function is not an accurate implementation of time and is more an
approximation. Here's one such example of how it would be used in a NON-
CRITICAL timer for 20 seconds:

Example

Flowchart

DECLARE
timeToWait = 20 (sec.)
seconds =0

!

DISPLAY
"[timeToWait] seconds
Timer started!™

Has the Timer
Waited the Desired

Wait Time?
(seconds »= timeToWait)

Pseudocode

1. DECLARE:
timeTowait = 20 (seconds)
seconds = 0

2. DISPLAY:
"[timeTowait] seconds Timer started!"

3. Have we waited the desired time?
A. NO (seconds < timeToWait):
1. ASSIGN: seconds = seconds + 1
2. CALL: wait(1) <=== this will pause
the application for 1 second
3. REPEAT: from step #3

4. DISPLAY:
"[timeTowait] seconds is up!"

5. End

This example is not accurate because the timer piece of waiting is embedded
among other logic (ie: the loop) that takes time to execute in it's own right.
Iterating this loop for longer times, will increasingly introduce inaccuracy and
actually take longer (more seconds)! There are other factors influencing the
inaccuracy as well which ties back to the CPU's architecture (ie: step logic),
system power state (ie: laptop on low power vs. performance mode) and other
things. So, how can we implement this to be accurate?

ACCURATE Timer

To accurately apply timers, we should use actual time itself! By applying a
"stop watch" logical approach, we can accommodate for outside factors that

otherwise influence the inaccuracies of the library timer approach.

The first thing we need to do is note the timer start-time which would be set to
NOW, then periodically, perform a calculation to determine the time passed
since the timer started (based on subtracting the start-time from the current-
time). The only influencing factor in maintaining the accuracy in this approach
is how often you decide to check for the time passed. The other advantage of
this is the unit itself, it is not limited to a programming language library
function's unit of measure (usually in seconds or milliseconds) because we can
logically test the time duration based on any part of time we wish (ie: hours,
days, years)!

(® IMPORTANT

The time "unit" is abstracted; this can represent seconds, minutes, hours,
days, years etc.. Therefore, you should make this clear based on the the
context in which you apply the logic. In the following example, it is clear
the unit is based on "seconds" through the messaging and logical context.

Example
Here is how you would set-up an ACCURATE 20-second timer:

Flowchart:

h 4 i The ime "unit" is abstracted; this
' can representseconds, minutes,
D,ECLARE hours, days, years efc..
timeStart
timePast

Therefore, you should make this
clear based on the the contextin
which you apply the logic.

timeToWait = 20 (sec.)&™

A Itis clear in this example itis based
on "seconds" through the
Start the timer messaging and logical context.

(ASSIGN: timeStart = NOW)

DISPLAY ;
"[timeToWait] seconds’
Timer started!" 7

Y

. »"
Determine Seconds Past
(ASSIGN: timePast = NOW - timeStart)

Has the Timer
Waited the Desired
Wait Time?
timePast >= timeToWait)

{

DISPLAY
"[timeToWait] seconds is
up!™"

End

Pseudocode:

in

is

DECLARE:
timeTowait = 20 (seconds)
timeStart
timePast = 0

ASSIGN: timeStart = NOW

DISPLAY:
"[timeTowait] seconds Timer started!"

ASSIGN: timePast = (NOW - timeStart) <-- NOTE: The context is
sec.,

so the result
in seconds

Have we waited the desired time?
A. NO (timePast < timeToWait):
1. REPEAT: from step #4

DISPLAY:
"[timeTowait] seconds is up!"

End

Glossary of Key Terms

Collection
Collections are composites of other objects that include data and have
logical functionality to support the containers operations.

Construct
A logical control such as a selection or iteration.

Container
Containers are very data specific in the simplest forms such as an array
and do not inherently have a lot of logical functionality.

Enumeration
Sequencing steps with an identifier such as a number (ex: 1. 2. 3. ...) or
letter (ex: A. B. C. ...).

Used primarily in pseudocode to identify the execution sequence of
statements.

Indentation
A fixed number of blank spaces to the right (ex: using the TAB key) used

for aligning grouped logic that is nested.

Iteration
A construct that enables looping in a program - the ability to repeat a
statement(s) easily.

Jump Statements
A poor logic flow that directs the next step of execution be an arbitrary
location outside of the immediate vicinity of the current statement (ex: go
to step #152). Instead, logic should be controlled using logical constructs
such as selection and iteration.

Modularity
A term used for breaking down logic into various degrees of detail. This can
be at a directory-level, file-level, function-level, or statement-level.

Nest
Content (statement(s), selection, or iteration) residing within a preceding
construct such as a selection or iteration.

The nested content would be dependant on a preceding construct and in
the case of pseudocode would be indented under it.

Obfuscate
To purposely confuse and misdirect meaning usually by way of applying
meaningless names to variables and functions.

Selection
A construct that enables decisions in a program to adapt to changing
conditions and execute different logic flows.

Semantic
Is another word for logic. It is the logical definition and meaning of an
algorithm.

Statement
A single line of instruction (step) such as a calculation, action to display or
receive user input.

Variable
A named placeholder used to reference a value. These are used for storing
data for later use and evaluation.

	Computational Thinking
	Overview
	Understand the Problem
	Decomposition
	Data Representation
	Pattern Recognition
	Abstraction
	Algorithm
	Testing
	Summary

	Documenting Logic
	Overview
	Flowchart
	Graphical Symbols
	Simple Example

	Pseudocode
	General Guidelines
	Simple Example

	Variables
	Overview
	Terminology
	Variable Identifiers (name)
	Organization

	Modularity with Functions
	Overview
	Function Identifiers (name)
	Function Documentation
	Closed-Boxes
	High-Level Functions
	Low-Level Functions
	Passing Information
	Returning Information
	Explicit Return
	Implicit Return
	Both Explicit AND Implicit Returns

	Logic - Selection
	Overview
	Optional Selection
	Flowchart
	Pseudocode

	Alternative Selection
	Flowchart
	Pseudocode

	Multiple Alternative Selection
	Flowchart
	Pseudocode

	Nested Selection
	Flowchart
	Pseudocode

	Testing

	Iteration
	Overview
	Optional Iteration
	Flowchart
	Pseudocode

	Mandatory Iteration
	Flowchart
	Pseudocode

	Nested Iteration
	Flowchart
	Pseudocode

	Data Containers & Collections
	Overview
	Collection Functions
	Navigation Actions
	Manipulation Actions

	Collection Declaration
	Example Scenario
	Flowchart
	Pseudocode

	Data Structures
	Overview
	Structure DEFINITION:
	Structure VARIABLE
	Access Structure Data
	Structure COMPOSITION
	Collection of Structures
	Example - Putting it all together!
	Flowchart
	Pseudocode

	Date and Time
	Overview
	CURRENT DateTime Constants
	VARIABLE of Date and Time

	Timer Logic
	Overview
	APPROXIMATE Timer
	Example

	ACCURATE Timer
	Example

	Glossary of Key Terms

